Statistics

Summer 2023

Lecture 4

Feb 19-8:47 AM

I surveyed 280 students and I discovered 15% had A, 25\% had B, 40% had C, and the rest

15% of $280=$
$.15(280)=42$
25% of $280=$
$.25(280)=70$
40% of $280=$
$.4(280)=112$
$\%$ of D grade
Bar chart

I randomly selected $8 Q \mathcal{Q}$, and here are the Scores

$$
\begin{aligned}
& \begin{array}{lllll}
2 & 5 & 5 & 6 & \text { l) } n=8
\end{array} \\
& 8 \quad 8 \quad 9 \quad 10 \quad \text { 2) Min. }=2, \text { Max. }=10 \\
& \text { 3) Range }=\text { max }-\min =8 \\
& \text { 4) Midrange }=\frac{\operatorname{Max}+\operatorname{Min}}{2}=6 \\
& \text { 5) Mode }=5 \xi 8 \\
& \text { 6) } \Sigma x=2+5+5+6+8+8+9+10 \\
& =53 \\
& \text { 7) } \sum x^{2}=2^{2}+5^{2}+5^{2}+6^{2}+8^{2}+8^{2}+9^{2}+10^{2}=399 \\
& \text { 8) } \bar{x}=\frac{\sum x}{n}=\frac{53}{8}=6.625 \\
& \text { 9) } S^{2}=\frac{n \sum x^{2}-\left(\sum x\right)^{2}}{n(n-1)}=\frac{8.399-53^{2}}{8(8-1)}=\frac{383}{56} \approx 6.839 \\
& \text { 10) } S=\sqrt{S^{2}}=\sqrt{6.839} \approx 2.615
\end{aligned}
$$

A data Set has the following 5-Number Summary

Box Plot

$I Q R=Q_{3}-Q_{1}=200-120=80$

$$
\text { Upper fence }=Q_{3}+1.5(\text { IQR })=200+1.5(80)=320
$$

$$
\text { Lower } f_{\text {fence }}=Q_{1}-1.5(I Q R)=120-1.5(80)=0
$$

Discuss passible outliers

LF	Min	UF Max
PO	40	320
NO Outlier	500	
Outlier		

Jun 15-7:59 AM

I randomly Selected 20 students, and here are their ages:

18	19	19	20	24
25	25	25	27	32
32	32	35	37	39
39	40	45	48	50

1) $n=20$
2) $M_{\text {in }}=18$

Max $=50$
3) Range $=50-18=32$
4) Midrange $=\frac{50+8}{2}=34$
5) Mode $25 \geq 32$

Bi modal
Find class width if we wish to have a freq. table with
6) 3 classes
7) 4 classes

$$
\begin{gathered}
C W=\frac{\text { Range }}{3}=\frac{32}{3}=10 . \overline{6} \\
c w=11
\end{gathered}
$$

$$
c w=\frac{\text { Range }}{4}=\frac{32}{4}=8
$$

$$
C W=9
$$

9) How many data elements are below 40? 16
10) what \% of data elements are below 40?

$$
\frac{16}{20} \cdot 100 \Rightarrow 80 \%
$$

Jun 15-8:17 AM

I randomly Selected 20 students, and here are their ages:

4) use $T I$ to find \bar{x}, S, and n.

What is standard deviation?
It is a non-negative numerical value that indicates how data elements spread from the mean.
If standard deviation is Small, data elements are close to the mean.
If standard deviation is big, data elements are more spread out from the mean.
If Standard deviation is Zero, then there is no spread, there is no deviation from the mean, all data elements are equal to the mean.

$$
\begin{aligned}
& \text { equal to the mean. } \\
& \text { Sample Standard deviation } \Rightarrow S\binom{S_{x} \text { in the }}{\text { call. }}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Store the following in L1. } \\
& \begin{array}{llll}
5 & 5 & 5 & 5
\end{array} \\
& 5 \quad 5 \quad 5 \quad 5 \\
& \text { use L1 with } 1 \text {-var tuts to find } \\
& \bar{x}=5 \quad S=0 \quad n=8 \\
& \text { Go back to } 11 \text {, change first } 5 \text { to } 6 \text {, } \\
& \text { then find } \\
& \bar{x}=5.125 \quad S=.354 \quad n=8 \\
& \text { Go back to L1, change } 6 \text { to 50, find } \\
& \bar{x}=10.625 \quad S=15.910 \quad n=8 \\
& \text { Go back to L1, change } 50 \text { to } 100 \text {, find } \\
& \bar{x}=16.875 \quad S=33.588 \quad n=8 \\
& \text { Go back to LI, change } 100 \text { to } 4.95 \text {, find } \\
& \bar{x}=4.994 \quad S=.018 \quad n=8 \\
& \text { Small } S \rightarrow \text { Data elements are close to } \bar{x} \\
& \text { Big } S \rightarrow \text { Data elements are more } \\
& \begin{array}{r}
\text { Spread out from } \bar{x} \text {. } \\
\text { Zero } \left.S \rightarrow \begin{array}{l}
\text { All data elements are the } \\
\text { Same and equal to }
\end{array}\right) .
\end{array}
\end{aligned}
$$

Clear all lists. End t 4:clearall lists Enter
Reset all lists.
STAT] Edit $5:$ Setup Editor Enter

Store the following in 11 .

$$
\begin{array}{ccccc}
75 & 83 & 65 & 50 & 100 \\
70 & 90 & 95 & 90 & 55 \\
85 & 88 & 68 & 72 & 94
\end{array}
$$

$\left.\begin{array}{cc}\text { STAT Edit } & 11 \\ { } } & 75 \\ & 83 \\ & 65 \\ & 94\end{array} \right\rvert\,$
Let's view L1
[and (1) Enter $\left.\begin{array}{ccccc}75 & 83 & 65 & 50 & .94\end{array}\right\}$
Now Sort LY, then view it.
[STAT] Edit [and] [1] Enter
a:Sortac
[and [1] Enter $\left\{\begin{array}{llllll}50 & 55 & 65 & 68 & 70 & \ldots\end{array} 100\right\}$ $\theta+\theta$
make STEM plot

$$
\begin{array}{l|lll}
5 & 0 & 5 \\
6 & 5 & 8 \\
7 & 0 & 2 & 5 \\
8 & 3 & 5 & 8 \\
9 & 0 & 0 & 45 \\
10 & 0 &
\end{array}
$$

use 1-Var Stats with LI to find

$$
\bar{x}=78 . \overline{6} \quad S=15.060 \quad n=15
$$

5-Number Summary

$$
\begin{array}{ll}
M_{i n}=50 & Q_{3}=90 \\
Q_{1}=68 & M_{a x}=100
\end{array}
$$

$$
M e d=83
$$

find S^{2} in reduced fraction

$$
\frac{4763}{21}
$$

$$
\begin{array}{lc}
5 \text {-Number } & \text { Summary } \\
\text { Min }=50 & Q_{3}=90 \\
Q_{1}=68 & M a x=100 \\
M e d=83 &
\end{array}
$$

upper fence $=Q_{3}+1.5(I Q R)=90+1.5(22)=123$

$$
\text { Lower fence }=Q_{1}-1.5(I Q R)=68-1.5(22)=35
$$

No outliers

Jun 15-9:42 AM

Consider the chart below

1) How many classes?

class MP	class F
18	5
30	10
42	15
65	7
666	3

4) Draw histogram

Use class MP ε. class F to find

$$
\bar{x}=39.9
$$

$$
S=S_{x}=13.282 \quad n=40
$$

No Menu
clear all lists. 1 -Var stats $11,1,2$
class MP \rightarrow LI with menu

$$
\text { class } F \rightarrow L 2
$$

Find S^{2} in reduced fraction $r S^{2}=\frac{882}{5}$
VARS 5: Statistics $3!5 x$ MATH Proc Enter

Jun 15-9:54 AM

How To find P_{k}
"Data must be Sorted" Sample Size
Location $L=\frac{k}{100} \cdot n$
If L is decimal \rightarrow Round-up $\rightarrow P_{K}=L$ th
If L is a whole $\# \rightarrow P_{K}=\frac{\text { th element + Nelexenent }}{2}$
Consider the Stem Plot below

$$
\begin{aligned}
& 1028 \\
& 213557 \\
& 30244 \sqrt{5689} \text { 2) find } P_{10} \\
& \begin{array}{l}
4035689 \\
51245
\end{array} \\
& \begin{aligned}
L=\frac{K}{100} \cdot n & =\frac{10}{100} \cdot 25=2.5 \\
L=3 & \rightarrow P_{10}=3 \text { rd element }=18
\end{aligned} \\
& \begin{aligned}
L= & \frac{K}{100} \cdot n=\frac{10}{100} \cdot 25=2.5 \\
L=3 & \rightarrow P_{10}=3 \text { rd element }=18
\end{aligned} \\
& \begin{array}{lll}
\text { 3) Sind } P_{80} & 80 \% & 20 \% \\
L-K \cdot n=\frac{80}{K} \cdot 25=20 & & B_{80}=47
\end{array} \\
& \text { 1) } n=25 \\
& \text { 2) find } P_{10} \\
& L=\frac{K}{100} \cdot n=\frac{80}{100} \cdot 25=20 \\
& P_{80}=\frac{20 \text { th element + Next element }}{2}=\frac{46+48}{2}=47
\end{aligned}
$$

Jun 15-10:35 AM

I randomly selected 25 nurses, here are their ages:

34	40	46
30	25	36
60	55	58
42	35	28
62	54	58
2	5588	
3	0	456
4	0	22
5	068	
5	004	488
6	02	

$\begin{aligned} & \text { Sind } P_{60} \\ & L=\frac{60}{100} \cdot 25=15\end{aligned} \quad P_{60}=\frac{15 \text { th element + Next element }}{2}=\frac{46+46}{2}$

$$
L=\frac{60}{100} \cdot 25=15
$$

find K such that $P_{K}=55$

$$
\begin{aligned}
K=P R & =\frac{B}{n} \cdot 100 \\
& =\frac{20}{25} \cdot 100=80
\end{aligned} \int_{80}=55
$$

Jun 15-11:10 AM

Complete the chart below

Use 1 - Var stats L1, L2 enter
with Menu
List: LI
Frequist: L2 calculate

$$
c w=14
$$

$$
n=\Sigma f=40
$$

$$
\text { class } M P \rightarrow L I
$$

$$
\text { class } F \rightarrow L 2
$$

T

$$
\bar{x}=40.55
$$

$$
S=S_{x}=12.233
$$

$$
n=40
$$

$S^{2}($ Reduced Faction):

$$
\frac{79453}{130}
$$

Class QZ 5
Consider the Sample below
$\begin{array}{lllll}12 & 18 & 15 & 15 & 10\end{array}$
$\begin{array}{lllll}10 & 8 & 20 & 16 & 9\end{array}$
Use your TI calc to find

$$
\begin{aligned}
& \bar{x}=13.3 \\
& S=4.084\} \begin{array}{c}
\text { Round } \\
\text { F denied }
\end{array} \\
& \left.s^{2}=\frac{1501}{90}\right\} \text { Reduced } \\
& \text { fraction }
\end{aligned}
$$

